CS395T: Foundations of
Machine Learning for

Systems Researchers
Fall 2025

Lecture 12: Evolution

Lain (Zelal) Mustafaoglu

Overview

Demos

Mathematical foundations
* Non-linear function optimization
* Gradient-based vs. black-box optimization
* Finite differences
* ES/OpenAl-ES/ NES
* Natural gradient

Key components of evolutionary algorithms

Applications: AlphaEvolve, Training-Free GRPO

Neuroevolution

RL environment Network’s dynamical weights

FXE LM

— T T

LN e €8 h

? S]
FC layer 1 FC layer 3

Neuroevolution: Harnessing Creativity in Al Agent Design, An MIT Press Book by Sebastian Risi, Yujin Tang, David Ha, and Risto Miikkulainen
https://neuroevolutionbook.com/demos/

https://sebastianrisi.com/
https://www.linkedin.com/in/yujin-tang-98b3ab5a/
https://www.linkedin.com/in/hardmaru/
https://www.cs.utexas.edu/~risto/
https://neuroevolutionbook.com/demos/
https://neuroevolutionbook.com/demos/

Demo (Il

self.hypers = hypers
super().__init__(mode=mode, init_rng=init_rng, config=config)
def _get_optimizer(self) -> optax.GradientTransformation
Returns optimizer.

b1 = 0.9

b2 = .999

return optax.adamw(

self.hypers.learning_rate, weight_decay=self.hypers.weight_decay
self.hypers.learning_rate, weight_decay=self.hypers.weight_decay, bi=b1,
b2=b2

def _get_

it_fn(self)
Returns initializer
scale = self.hypers
Initialize with a
return initializers

return initializers

> jax.nn.initializers.Initializer
function.
init_scale

smaller scale to encourage finding low-rank solutions
normal(® + 1j * @, scale * 8.1, jnp.complex64)

normal(8 + 1j * @, scale * 0.2, jnp.complex64)

def _linear_schedule(self, global_step,
def _linear_schedule(self, global_ step,

start: float = 8.0, end: float
start: float = 0.9,

=1.8)
end: float = 8.8)
frac =

1 - global_step / self.config.training_steps
return (start - end) * frac + end

efunctools.partial(jax.jit, static_argnums=8)
def _update_func(

self,

decomposition: tuple[jnp.ndarray, jnp.ndarray, jnp.ndarray],
opt_state: optax.OptState,

global_st

tep: jnp.ndarray,

rng: jnp.ndarray

) -> tuple[
tuple[jnp.ndarray,
optax.OptState,
jnp.ndarray,

jnp.ndarray, jnp.ndarray],

"A single step of decomposition parameter updates
Compute loss and gradients
loss

grads = jax.value_and_grad(

lanbda decomposition, global_step, rng: jnp.mean(
self._loss_fn(decomposition, global_step, rng)

)

) (decomposition, global_step, rng)

When optimizing real-valued fun

the conjugate of the gradient

grads

ctions of complex variables, we must take
= jax.tree_util.tree_map(lambda x: x.conj(), grads)
Gradient updates

updates, opt_state = self.opt.update(grads
decomposition =

opt_state,

decomposition)
optax.apply_updates(decomposition, up

s)

Add a small amount of gradient noise to help with exploration

Iteration 15

Source: Alpha

(Novikov et al., 2025)

https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131

Non-linear function optimization

Need search

Two key questions in all search methods:
1. At what point do you start the search?

2. What is the next search point, given some information from
current search point?

* Need to know two things: direction to move in, step size

Gradient-based optimization

* We’ve looked at gradient ascent/descent
» Start with a random point
* Obtain next search point by taking step along gradient:
* Alpha - step size; gradient = direction

Tir1 = T + oV f(ar)

Might be noisy or unavailable

* Two issues with any gradient-based method:
* Requires gradient information

* Does local optimization (exploitation) unless exploration is injected
explicitly (entropy bonus, etc.)

Black-box optimization

Optimization when no gradients are available, but function can
be evaluated at different points

200 W -400

(a) Search Space Appropriate for Hill (b) Search Space in a Creative
Climbing Domain

Source: Creative Al Through Evolutionary Computation: Principles and Examples

https://arxiv.org/abs/2008.04212

Finite

differences

Approximate derivatives with differences,
which only require function evaluation

Forward differences:

dif(x + Ax) - f(x)
dx Ax

Backward differences:

df f(x) — f(x — Ax)
dx Ax

Centered differences:

df f(x+4x) - f(x — AX)
dx 2Ax

Higher dimensions: we can approximate
partial derivatives in same way but we
need gradient.

fix+Ax)

(A)

f(x)

f(x+AX)

https://www.sciencedirect.com/topics/engineering/finite-difference-formula
https://www.sciencedirect.com/topics/engineering/finite-difference-formula
https://www.sciencedirect.com/topics/engineering/finite-difference-formula
https://www.sciencedirect.com/topics/engineering/finite-difference-formula
https://www.sciencedirect.com/topics/engineering/finite-difference-formula

Gradient Vector Fields

16. Vector Calculus

Gradient Vector Fields
The gradient function of a function of two real variables is a 2D Vector Field.

F(x,y) = grad(f(my)) = Vf(x’J’)

LIPI>»

,, f(oy)=ale +y*)+b
o —— V7 (1.3) = (2 20)

O l t .
f . g
[] [) Potential Function f(x,y) = a (x* +y*) +b b=07 1=1 _—_
I I I l e I l S I O I l S GeoGebra: https://www.geogebra.org/classic/zkdfapfk Author: Andreas Linder, Jack Jackson
Jack.Jackson@UAFS.edu

Jack LxJackson Il, PhD.

Use fact that gradient is direction of greatest increase in function value
Sample a bunch of points around current search point
Find maximal point
Take step in direction of that point

Problem: greedy, so may get trapped in local optimum like gradient
ascent/descent

Solution: don’t be greedy

Repeat:
* Sample points in neighborhood of current search point

* Pick top-k by function value (set of elites €)
 Referred to as fithess score

* Update search point to elite average

1 _
la’H—l A % Zen
0,c€

One step further: antithetic evolutionary strategies (ES)

« Sample random directions €

Evaluate two candidates for each direction: éf = [I; == 0 €,
Get their scores: f(6), £(6,)
Build the update direction:

N A ~ Also called mirrored
_ 1 f(@n) — f(n) _ sampling
9; — 5 €n
N 20 . .
n=1 Refer to: Mirrored sampling
¢ Update: in evolution strategies with
_ _ _ weighted recombination
Miv1 < M T~ g; (Auger et al., GECCO 2011)

https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694

Two-point estimator = centered finite differences

* Two-point estimator in antithetic ES = centered finite differences

Z f(ii + 0€,) — f(l; — 0&,) _

€n
20

Centered finite diff along €;

* Intuitively: Use fitness differences to build an update, average
across pairs

https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864

One sampling strategy: Isotropic Gaussian ES

Repeat:

* Sample points in neighborhood of ji; to obtain population of size
N

0, = f; + o€, € ~N(0,I), n=1,...,A

* Pick top-k by fitness (elite set €)
 Update mean toward elite average

_ 1 ~
Hit1 < E Z en
0,€&

Weighted averaging

f(x)

Natural Evolution Strategies (NES)

We already sample parameters from a distribution P

Key idea: Treat distribution parameters ¢ as optimization objective
J(¢) = Egp, [F(0)]
Use log-derivative trick to rewrite gradient of /(¢) without knowing Vf:

Ved(¢) = E§~p¢|:f (6) Vg 10gp¢(9_)]

Update parameters: ;.1 = ii; + aVJ(¢)
Bound change in parameters: || Vi || < 6

Source: Natural Evolution Strategies (Wiestra et al. 2014)

https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf

Constraining step sizes for safe updates

Solution: keep the next sampling
distribution similar to current
distribution and use steepest ascent
in a KL trust-region:

max VJ(i:) A s.t. KL(pﬁi
i

pﬂi+Aﬁ) <4

Closed form solution:

_ — \—1 _
Ai o< [F(f) ™ VI (i)
Fisher information matrix F measures how sensitive distribution is
to each parameter direction

PDF of the distribution, covariance = 0 PDF of the distribution, covariance = 0.7

Source: Natural Evolution Strategies (Wiestra et al. 2014)

https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf

Natural gradient

Rescale gradients using how sensitive the distribution is to its parameters
Vo =|F(¢)™ VyJ

Natural gradient step

sigma) = (u, o) ...» [59 » oo f(2) V5 logpe(z)
> Vologpe(z) v Vo log pe(2)
\z... < - VoJ (6)
AN
FG_IVglngg >
e conv (Vg log py)
mu mu

Plain Gradient Natural Gradient
Source: Natural Evolution Strategies (Wiestra et al. 2014)

https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf

TRPO - same idea, applied to policies

« Same “safe step” idea, but the distribution is actions from the
policy

* TRPO constraint:

max V;.J(6:) AG s.t. E[KL(my (1s) || maaq(-ls))] < 0

= AH_ X Fﬂ(e_fi)_l Vg](e_z)

Uses natural gradient updates like NES

Example: ES as an alternative to RL (OpenAl-ES)

Treat policy parameters as a vector it —Representation

Sample perturbations i + o€ — Population

Evaluate episode return = fitness — Selection

Use the two-point estimator to update the mean i — Evolutionary Operators

i=2

@® original policy

gaussian
distribution

gradient
> direction

Image: https://medium.com/swlh/evolution-strategies-844e2694e632

https://medium.com/swlh/evolution-strategies-844e2694e632
https://medium.com/swlh/evolution-strategies-844e2694e632
https://medium.com/swlh/evolution-strategies-844e2694e632
https://medium.com/swlh/evolution-strategies-844e2694e632
https://medium.com/swlh/evolution-strategies-844e2694e632

OpenAl-ES from an EA perspective

* Representation: parameter vector u
i _ _ N
* Population: {{1; + g€, } _.
* Selection: comparison of episodic
returns f*, —f~
* No elite set
* Evolutionary Operators:

* Mutation: o€,

* Recombination: average contributions
1{6) g_i

Evolutionary algorithms: 4 key parts

* Population of "candidates" (search
points)

* Representation of each candidate

 Selection of best candidates
e Elitism
e Methods such as MAP-Elites

* Evolutionary operators to generate new
candidates

Evolutionary operators

Many ways of carrying over information from a candidate or
combining information from multiple candidates

Two common operations:
* Mutation: explores region near candidate

* Recombination: explores region between multiple
candidates such as by using convex combination of vectors
* Crossover: explores region between two candidates

Example: polynomial curve fitting

* Given a set of points (x, y) in dataset, i ‘o — costx)
find the polynomial that best fits given ol i ol
points by minimizing the sum of
distance between each point and curve os |

Example: Generate data by adding
Gaussian noise to f(x) = cos(x) 05

* We can use: 2
* Polynomial regression 0 2 2 6 8 10
* Differential evolution (DE)

fmodel(w7 :17) = wo +w1T + 'w2-’172 + ’U)3$3 + ’lU4:174 + w5:c5

Objective: minimize MSE

Differential Evolution (DE)

* Population = set of vectors of coefficients w

* In each generation:
* Mutation: pick three individuals a, b, c and create mutant vector v

v=a-+f|(b—c)
* Crossover: mix v with the current target w; to obtain u
{vj, if rand() < CR
Uj =

w; i, otherwise

* Selection: evaluate both u and w; with MSE, keep the better one

{u, if MSE(u) < MSE(w;)
W; <

w;, otherwise

A tutorial on Differential Evolution with Python

https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/

Baseline demo: Polynomial regression

* Ordinary least squares (OLS):

Polynomial curve fitting: OLS vs Ridge

'\if — (XTX)_]'XTy 104 : —g?_tsaﬁt

* Ridge regularization: - //\\
wy=(X'X+X)'X"y / \

Iteration 300

20 =

10{ .s&a

Demo: SN\ NS/ 1, S\ '+ 2,
0.0 SORN N el

Differential | 5 il s,
Evolution NN ' Mot

-1.5

A tutorial on Differential Evolution with Python

https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/

Evolving neural networks

* Neuroevolution: Optimize neural networks without
backprop

* Two modes:
* Evolve only weights for a fixed architecture

* Works when the environment is non-differentiable (physics
engine jitter, human feedback, etc.)

* Evolve both topology and weights
* The network’s structure itself changes over time

* Examples: NEAT, etc.

Example: AlphaEvolve (l)

(7) scientist / Engineer * Evolve entire files in any language
. _— Initial program .
e otion or ot Evaluation code with cormponents - Database: Pool of candidate programs
l l l l * Every candidate is a full source file with
T — 1T é I;""j T Sa e versioned metadata and vector of
1 i | | = . = fitness scores
| Prompt sampler |! LLMsensemble | |Program database | Best program
VSV PV | PO S NS VRSV S | O O VO S | . .
I 1 I LLM samplers = mutation/crossover engine
— Y ¥ _ . .
i Distributed Controller Loop i * Sampler prompt B tOp-k elites + diff
|
i parent_program, inspirations = database.sample() : context + task spec
| prompt = prompt_sampler.build(parent_program, inspirations) | . . .
| diff = 11m.genercte(promptz) : distributed evaluation of
i child_prograom = apply_diff(parent_program, diff I .
| results = .execute(child_program) i candidates
|
! |

database.add(child_program, results)

L * Supports a vector of fitness metrics:
S AlphaEvolve {performance, resources, provability...)

Source: Alpha A ling ag ientific and algori ic di (Novikov et al., 2025)

https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131

Example: AlphaEvolve (ll)

* /slands of programs evolved separately:

., 0q [
° PR < °®®
(A . ° s ° (} o oo o
° ° —_ ® — ® — (_0° >
° o e® o O O °® o Se % e
Evolve Evolve
separately o ° separately ..
°
X °e®
Reset islands
* Generating new offspring:
.. Y ° .. FY
[J]
eo°
Sample ® Sample Generate program Add new
clusters programs with LLM based on program to

from clusters input programs cluster

https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6

Example: Training Free GRPO

Group Computation

Ac

— o e e e e e e M e M e M M M e M e M e M e e e e e e e e e e o

< Group Computation

B

summarize extract
experience

Training-Free Group Relative Policy Optimization (Cai et al., 2025)

https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191

xample: Training Free GRPO

‘ l @ When m = -2.0, the area of

Rollout. x.G

4 trajectory 1
Let me find the intersection point
D on AC

executing code

triangle ABD is half the total
area.

verifying the area of D
triangle ABD

(€] 1 found the solution!
\ AN

A

Question
.i
L}
A
{ B | B

(o trajectory 2

@ For m = -2, intersection point D
(-4, 12). Let me verify this by
checking if the line indeed divides
the triangle into two equal areas.

{8 cxecuting coce

The point D(-4,12) is not
actually on the line segment AC,
it's an extension of it

executing code

The line y = 2x - 4 through
point B indeed divides
triangle ABC into two | A

« B (2

(o trajectory 6

Summarization

Advantage

summarization 1
Step3: The agent set up equations to
find the intersection point D,
Step4: The agent tested various slopes
numerically and found that when
m = -2, the area of triangle ABD
equals exactly half the total
Step5: The agent verified the solution
divides the area in half

summarization 2

Step3: The agent tests a specific slope
value m = -2 to find the
intersection point D

Step4:The agent attempts to verify
the solution by calculating both
areas (ABD and BCD).

Step5:The agent calculates the area of
triangle BCD and discovers it's
36. It realizes that point on the
extension of segment AC,
making the geometry invalid.

Step6: The agent properly sets up the
area equation constraint and
find the intersection point.

)= (

Figure 3. Example of a Training-Free GRPO learning step.

N\,

J

summarization 6

)

Group Compufcﬁon\ |

advantage computation

@ Inattempt 1, the agent failed to
consider the physical constraints
of the triangle, the found
ntersection lies outside s
AC

nent

@ In attempt 2, the agent
recognized the error in step 3 and
completely changed approach,
properly setting up both the area
and geometric constraints

simultaneously

¥

When solving geometry
problems involving

intersections with bounded
regions, always validate that
mathematical solutions satisfy
geometric constraints.

Training-Free Group Relative Policy Optimization (Cai et al., 2025)

https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191

3
{
Y
{
!

cgesere O

e

