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Overview

• Demos 
• Mathematical foundations

• Non-linear function optimization
• Gradient-based vs. black-box optimization
• Finite di>erences
• ES / OpenAI-ES / NES
• Natural gradient

• Key components of evolutionary algorithms
• Applications: AlphaEvolve, Training-Free GRPO
• Neuroevolution 



Demo (I)

Neuroevolution: Harnessing Creativity in AI Agent Design, An MIT Press Book by Sebastian Risi, Yujin Tang, David Ha, and Risto Miikkulainen 
https://neuroevolutionbook.com/demos/ 

https://sebastianrisi.com/
https://www.linkedin.com/in/yujin-tang-98b3ab5a/
https://www.linkedin.com/in/hardmaru/
https://www.cs.utexas.edu/~risto/
https://neuroevolutionbook.com/demos/
https://neuroevolutionbook.com/demos/


Demo (II)

Source: AlphaEvolve: A coding agent for scientific and algorithmic discovery (Novikov et al., 2025)

https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131


Non-linear function optimization

Need search

Two key questions in all search methods:
1. At what point do you start the search?
2. What is the next search point, given some information from 

current search point?
• Need to know two things: direction to move in, step size 



Gradient-based optimization

• We’ve looked at gradient ascent/descent
• Start with a random point
• Obtain next search point by taking step along gradient:

• Alpha à step size; gradient à direction 

• Two issues with any gradient-based method:
• Requires gradient information
• Does local optimization (exploitation) unless exploration is injected 

explicitly (entropy bonus, etc.)

Might be noisy or unavailable 



Black-box optimization

Optimization when no gradients are available, but function can 
be evaluated at di?erent points

Source: Creative AI Through Evolutionary Computation: Principles and Examples 

https://arxiv.org/abs/2008.04212


Finite 
diAerences

Approximate derivatives with differences, 
which only require function evaluation

Forward differences:
d𝑓
𝑑𝑥

»
𝑓(𝑥 + Δx)	– 	f(x)

Δx

Backward differences:
d𝑓
𝑑𝑥

»
f(x) 	− 𝑓(𝑥 − Δx)

Δx

Centered differences:
d𝑓
𝑑𝑥

	»
𝑓(𝑥 + Δx) − 𝑓(𝑥 − Δx)

2Δx

Higher dimensions: we can approximate 
partial derivatives in same way but we 
need gradient. 

https://www.sciencedirect.com/topics/engineering/finite-diKerence-formula 

https://www.sciencedirect.com/topics/engineering/finite-difference-formula
https://www.sciencedirect.com/topics/engineering/finite-difference-formula
https://www.sciencedirect.com/topics/engineering/finite-difference-formula
https://www.sciencedirect.com/topics/engineering/finite-difference-formula
https://www.sciencedirect.com/topics/engineering/finite-difference-formula


One solution 
for higher 
dimensions

Use fact that gradient is direction of greatest increase in function value

      Sample a bunch of points around current search point
      Find maximal point

      Take step in direction of that point
Problem: greedy, so may get trapped in local optimum like gradient 
ascent/descent

x
++
+



Solution: don’t be greedy

Repeat: 
• Sample points in neighborhood of current search point
• Pick top-k by function value (set of elites	ℇ) 

• Referred to as fitness score 
• Update search point to elite average



One step further: antithetic evolutionary strategies (ES) 

• Sample random directions 
• Evaluate two candidates for each direction:
• Get their scores:                ,
• Build the update direction: 

• Update:

Also called mirrored 
sampling

Refer to: Mirrored sampling 
in evolution strategies with 
weighted recombination 
(Auger et al., GECCO 2011) 

https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694
https://dl.acm.org/doi/10.1145/2001576.2001694


Two-point estimator = centered finite di3erences 

• Two-point estimator in antithetic ES = centered finite di?erences

• Intuitively: Use fitness di?erences to build an update, average 
across pairs  

Centered finite di9 along 𝜖! 

Evolution Strategies as a Scalable Alternative to Reinforcement Learning (Salimans et al., 2017)

https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864
https://arxiv.org/abs/1703.03864


One sampling strategy: Isotropic Gaussian ES

Repeat: 
• Sample points in neighborhood of 𝜇̅!	 to obtain population of size 

Λ

• Pick top-k by fitness (elite set ℇ) 
• Update mean toward elite average



Weighted averaging

x1 x4𝝁̅𝒊x2 x3

x

f(x)



Natural Evolution Strategies (NES) 

We already sample parameters from a distribution 𝑝#
Key idea: Treat distribution parameters 𝜙 as optimization objective

Use log-derivative trick to rewrite gradient of 𝐽 𝜙 	without knowing ∇𝑓:

Update parameters: 𝜇̅"#$ = 𝜇̅" + 𝛼∇𝐽 𝜙
Bound change in parameters: ||	∇𝜇̅	||	≤ 𝛿

Source: Natural Evolution Strategies (Wiestra et al. 2014) 

https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf


Constraining step sizes for safe updates

Solution: keep the next sampling 
distribution similar to current 
distribution and use steepest ascent 
in a KL trust-region:

Closed form solution:

Fisher information matrix 𝐹	measures how sensitive distribution is 
to each parameter direction

Source: Natural Evolution Strategies (Wiestra et al. 2014) 

https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf


Natural gradient 

Rescale gradients using how sensitive the distribution is to its parameters

Natural gradient step

Source: Natural Evolution Strategies (Wiestra et al. 2014) 

https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf
https://www.jmlr.org/papers/volume15/wierstra14a/wierstra14a.pdf


TRPO – same idea, applied to policies 

• Same “safe step” idea, but the distribution is actions from the 
policy

• TRPO constraint:

Uses natural gradient updates like NES



Example: ES as an alternative to RL (OpenAI-ES)

• Treat policy parameters as a vector 𝜇̅	–Representation 

• Sample perturbations 𝜇̅ ± 𝜎𝜖 – Population

• Evaluate episode return = fitness – Selection 
• Use the two-point estimator to update the mean 𝜇̅	– Evolutionary Operators

Image: https://medium.com/swlh/evolution-strategies-844e2694e632 

i = 0

i = 1

i = 2

https://medium.com/swlh/evolution-strategies-844e2694e632
https://medium.com/swlh/evolution-strategies-844e2694e632
https://medium.com/swlh/evolution-strategies-844e2694e632
https://medium.com/swlh/evolution-strategies-844e2694e632
https://medium.com/swlh/evolution-strategies-844e2694e632


OpenAI-ES from an EA perspective 

• Representation: parameter vector	𝜇̅
• Population: {𝜇̅! ± 𝜎 ̅𝜖$}$%&

'

• Selection: comparison of episodic 
returns 𝑓(, −𝑓)
• No elite set

• Evolutionary Operators:
• Mutation: ±𝜎 ̅𝜖'
• Recombination: average contributions 

to 𝑔̅"

Representation

Parameter vectors

Population

Antithetic pairs

Selection

Pairwise 
comparison of 

episodic returns

Evolutionary 
Operators

Mutation, 
recombination



Evolutionary algorithms: 4 key parts 

• Population of "candidates" (search 
points)
• Representation of each candidate
• Selection of best candidates 

• Elitism
• Methods such as MAP-Elites

• Evolutionary operators to generate new 
candidates

Representation Population

Selection Evolutionary 
Operators



Evolutionary operators

Many ways of carrying over information from a candidate or 
combining information from multiple candidates

Two common operations:
• Mutation: explores region near candidate
• Recombination: explores region between multiple 

candidates such as by using convex combination of vectors
• Crossover: explores region between two candidates 



Example: polynomial curve fitting

• Given a set of points (x, y) in dataset, 
find the polynomial that best fits given 
points by minimizing the sum of 
distance between each point and curve

• Example: Generate data by adding 
Gaussian noise to 𝑓(𝑥) 	= 𝑐𝑜𝑠(𝑥)	

• We can use:
• Polynomial regression
• Di2erential evolution (DE)

• Objective: minimize MSE



DiAerential Evolution (DE)

• Population = set of vectors of coefficients 𝒘
• In each generation:

• Mutation: pick three individuals a, b, c and create mutant vector 𝑣
𝑣	 = 	𝑎	 + 	𝑓	(𝑏	 − 	𝑐)

• Crossover: mix 𝑣	with the current target 𝐰"  to obtain 𝑢	

• Selection: evaluate both 𝑢	and 𝐰"  with MSE, keep the better one

A tutorial on Di>erential Evolution with Python

https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/


Baseline demo: Polynomial regression

• Ordinary least squares (OLS):

• Ridge regularization:



Demo: 
DiAerential
Evolution

A tutorial on Di>erential Evolution with Python

https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/
https://pablormier.github.io/2017/09/05/a-tutorial-on-differential-evolution-with-python/


Evolving neural networks

• Neuroevolution: Optimize neural networks without 
backprop
• Two modes:
• Evolve only weights for a fixed architecture

• Works when the environment is non-di>erentiable (physics 
engine jitter, human feedback, etc.)

• Evolve both topology and weights
• The network’s structure itself changes over time

• Examples: NEAT, etc. 



Example: AlphaEvolve (I)

• Evolve entire files in any language 

• Database: Pool of candidate programs
• Every candidate is a full source file with 

versioned metadata and vector of 
fitness scores

• LLM samplers = mutation/crossover engine
• Sampler prompt = top-k elites + di9 

context + task spec

• Evaluators: distributed evaluation of 
candidates
• Supports a vector of fitness metrics: 

⟨performance, resources, provability…⟩

Source: AlphaEvolve: A coding agent for scientific and algorithmic discovery (Novikov et al., 2025)

https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131
https://arxiv.org/abs/2506.13131


Example: AlphaEvolve (II)

• Islands of programs evolved separately: 

• Generating new o>spring:

Mathematical discoveries from program search with large language models (Romera-Parades et al. 2023)

https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6
https://www.nature.com/articles/s41586-023-06924-6


Example: Training Free GRPO

Training-Free Group Relative Policy Optimization (Cai et al., 2025)

https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191


Example: Training Free GRPO

Recombination 
functions

Training-Free Group Relative Policy Optimization (Cai et al., 2025)

https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191
https://arxiv.org/abs/2510.08191


Takeaways




